量化投资不等于python很多语言都可以做。之所以感觉现在一提量化就用python是它的三方库多。很多开发的不用在重新造轮子。特别是分析统计的时候,用着很方便毕竟毕竟是量化是以投为主,而非编程开发编程语言只是一个工具。py入门比较简单,适合非专业人士使用。如果量化真是玩到了一定的级别,比如高频这些场景py肯定是撑不住的!未来其它语言在量化领域能否取代py,取决于投资行业变化。如果未来我们的A股也提供开放的API接口,那用什么语言就无所谓了。
Python在金融领域用处还是挺广泛的。首先是这种语言比较容易学,而且维护成本低。这是一个比较重要的优势,此外还有一个比较重要的优势就是Python是开源的,有相当多现成的***可以调用。是一种非常不错的语言。
除了一些什么爬虫,Web程序开发,图像处理等等。
在金融分析和量化交易领域,Python有着广泛的应用。因为Python的语法,可以非常简单的就完成金融运算,每一个数学语句都能够转变为一行Python代码,每一行允许超过10万的计算量。所以Python精通于计算以及数学和科学当中的排列组合问题。
而且Python有非常多的扩展库,可以大大的简化编程人员的工作量,从而实现非常复杂的计算任务。比如SciPy库,很适合用来做技术领域和科学领域的计算,NumPy,也是Python的一个扩展,它可以很好地处理数学函数,数组和矩阵。
当然有用,主要表现在2方面,一个是数据的获取,一个是数据的处理,下面我简单介绍一下,感兴趣的朋友可以尝试一下:
针对股票等金融数据的获取,Python专门提供了一个免费、开源的财经数据接口包—tushare,集成了数据从***集、加工、清洗到存储的全过程,极大地减轻了金融分析人员的工作量,同时又提供了丰富多样的数据格式(当然,你也可以基于网络爬虫自己手动实现,但整个过程比较耗时),下面我简单介绍一下这个模块的安装和使用:
1.首先,安装tushare,这个直接在cmd窗口输入命令“pip install tushare”即可,如下,程序会自动检测相关依赖并安装:
2.安装完成后,我们就可以直接获取股票、基金、期货等金融数据了,这里官方给出了非常详细的接口文档,每个函数及其参数都有详细介绍,非常适合开发者学习和掌握:
针对股票等金融数据的处理,Python提供了非常多的数据处理模块,比较著名、也比较有影响力的就是pandas(前面的tushare就是基于pandas),内置了大量函数和数据类型,可以轻松处理各种复杂的数据格式(包括CSV,Excel,Txt,Json等),当然,你也可以基于scipy,numpy进行数学计算,也是非常方便的:
除了基本数据处理,其实针对股票等金融数据的可视化,Python也可以轻松实现,测试代码如下,这里结合matplotlib(pyecharts等模块也可以)对tushare获取的股票K线数据进行绘图,整体效果还是非常不错的:
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:3801085100@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.wwnpw.com/post/14631.html
下一篇
美元今天多少汇率