人工神经网络,顾名思义,是一个可以说是仿生学的概念。人类发现神经元之间相互协作可以完成信息的处理和传递,于是提出了人工神经网络的概念,用于进行信息处理。
下面我们来点通俗易懂的几个概念。如果想系统性学习,建议买一些相关的书籍看一看。
神经网络技术是机器学习下属的一个概念,本质上是从信息处理的角度对人脑神经元网络进行抽象模拟,从而建立计算模型。
基于神经连接的计算模型在上世纪40年代开始受到重视,大量的训练数据(包括图像、***和语音)成功的实现了数据分析。在深度学习发展之前,神经网络通常只有3到5层,和几十个神经元/节点;深度学习之后,神经网络扩展到7到10层,甚至更多层,模拟神经元数目增至百万量级,从而面向更为复杂的问题实现更为可靠的处理。当下兴起的人工智能,主要就是大规模的深度学习。
具体来看,神经网络有三类主要形式:
1.1 前馈神经网络
前馈神经网络(Feed forward neural networks)是最常见的人工神经网络。在这种结构下,信息只向一个方向(向前)移动,即从输入层经过“隐藏层”到输出层,没有循环网络。首个单节神经网络在1958年提出,经过计算能力和训练算法的***展,前馈神经网络展现出了更高的性能水平。
1.2 循环神经网络
循环神经网络(Recurrent neural networks)指结构中包含节点定向连接成环(loops)的人工神经网络,非常适合于处理(手写、文本、语音形式的)任意时序的输入序列。2016年11月,牛津研究报告显示,基于神经网络(和卷积神经网络)的系统在唇语识别应用中实现了95%的准确率(有经验的人类唇语者准确率近52%)。
1.3 卷积神经网络
卷积神经网络(Convolutional neural networks)是一种深度前馈人工神经网络,其逻辑结构受动物视觉大脑皮层的启发,对于大型图像处理(视觉感知任务)有出色表现。
首先要搞清楚的是神经网络是一种模型,也可以理解为是一种技术,是顺应时代发展而产生的一种技术(或模型)。我们目前所处的时代是互联网信息时代,也就是说,随着互联网的发展,大量的信息数据日益增长,在这个背景之下,我们可以有大量的数据来训练神经网络了,逐渐取代了之前的传统的机器学习方法或者基于规则的方法。也就是说明了,神经网络是一种数据驱动的技术,它的训练是依赖于大量数据的,如果你没有可用来训练模型的大量数据,与其使用神经网络模型还不如使用传统的机器学习模型。
其实,神经网络很早很早之前就被提出了,只不过当时没有如今这么多数据的支持,导致其性能不好,所以被没落了,机器学习技术反而在当时比较盛行,而如今,时代变了,正所谓三十年河东,三十年河西,神经网络终于成了如今计算机领域的霸主。
神经网络的一大好处就是,省去了传统机器学习方法中繁琐而敏感的人工特征设计(即特征工程)这一过程,完全靠计算机通过各种神经网络结构,以及喂给它大量的数据,自行学习特征(至于它学到了哪些特征,我们是不清楚的,这就是我们常说的,神经网络是一种黑盒技术,反正我们根据模型的结果,知道它学到了某些特征)。
其实,神经网络的原理就是模仿人类的大脑的神经元的学习过程。每当我看到神经网络这个名词,我就会想到小婴儿,把还没训练前的神经网络比作新生儿,神经网络的训练过程,类似于每天给小baby不停的重复“爸爸”“妈妈”,经过一段时间的训练,它就学会了,看到妈妈的时候,会喊妈妈,看到爸爸的时候,喊爸爸,至于小宝宝到底是怎么学会的,你也不是特别清楚,反正你会,“哇哦,好神奇”。当然也会有出错的时候,没有任何一个模型会百分之百的正确。
在现实的应用中,你会根据不同的任务设置,选择不同的神经网络结构,比如CNN,RNN,LSTM.所有的神经网络结构都是来自于任务的需要。而且会随着时间随着科技的进步,神经网络结构越来越高能。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:3801085100@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.wwnpw.com/post/17852.html